Kodaira Dimension and the Yamabe Problem

نویسنده

  • Claude LeBrun
چکیده

The Yamabe invariant Y (M) of a smooth compact manifold is roughly the supremum of the scalar curvatures of unit-volume constant-scalar curvature Riemannian metrics g on M . (To be absolutely precise, one only considers constant-scalar-curvature metrics which are Yamabe minimizers, but this does not affect the sign of the answer.) If M is the underlying smooth 4-manifold of a complex algebraic surface (M, J), it is shown that the sign of Y (M) is completely determined by the Kodaira dimension Kod(M,J). More precisely, Y (M) < 0 iff Kod(M, J) = 2; Y (M) = 0 iff Kod(M,J) = 0 or 1; and Y (M) > 0 iff Kod(M, J) = −∞.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pr 2 00 6 ON A FULLY NONLINEAR YAMABE PROBLEM

We solve the σ2-Yamabe problem for a non locally conformally flat manifold of dimension n > 8. Résumé : On résout le problème de σ2-Yamabe pour des variétés riemanniennes compactes sans bord non localement conformément plates de dimension n > 8. Dedicated to Professor W. Y. Ding on the occasion of his 60th birthday

متن کامل

1 2 M ay 2 00 5 ON A FULLY NONLINEAR YAMABE PROBLEM

We solve the σ2-Yamabe problem for a non locally conformally flat manifold of dimension n > 8. Dedicated to Professor W. Y. Ding on the occasion of his 60’s birthday

متن کامل

A compactness theorem for a fully nonlinear Yamabe problem under a lower Ricci curvature bound

We prove compactness of solutions of a fully nonlinear Yamabe problem satisfying a lower Ricci curvature bound, when the manifold is not conformally diffeomorphic to the standard sphere. This allows us to prove the existence of solutions when the associated cone Γ satisfies μ+Γ ≤ 1, which includes the σk−Yamabe problem for k not smaller than half of the dimension of the manifold.

متن کامل

Compactness of solutions to the Yamabe problem

We establish compactness of solutions to the Yamabe problem on any smooth compact connected Riemannian manifold (not conformally diffeomorphic to standard spheres) of dimension n 7 as well as on any manifold of dimension n 8 under some additional hypothesis. To cite this article: Y.Y. Li, L. Zhang, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  2004 Académie des sciences. Published by Elsevier SA...

متن کامل

2 00 6 Compactness of solutions to the Yamabe problem . III YanYan

For a sequence of blow up solutions of the Yamabe equation on non-locally confonformally flat compact Riemannian manifolds of dimension 10 or 11, we establish sharp estimates on its asymptotic profile near blow up points as well as sharp decay estimates of the Weyl tensor and its covariant derivatives at blow up points. If the Positive Mass Theorem held in dimensions 10 and 11, these estimates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999